A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System
نویسندگان
چکیده
Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.
منابع مشابه
Identification and Control of MIMO Systems with State Time Delay (Short Communication)
Time-delay identification is one of the most important parameters in designing controllers. In the cases where the number of inputs and outputs in a system are more than one, this identification is of great concern. In this paper, a novel autocorrelation-based scheme for the state variable time-delay identification for multi-input multi-output (MIMO) system has been presented. This method is ba...
متن کاملDesign and Implementation of Digital Demodulator for Frequency Modulated CW Radar (RESEARCH NOTE)
Radar Signal Processing has been an interesting area of research for realization of programmable digital signal processor using VLSI design techniques. Digital Signal Processing (DSP) algorithms have been an integral design methodology for implementation of high speed application specific real-time systems especially for high resolution radar. CORDIC algorithm, in recent times, is turned out to...
متن کاملField Programmable Gate Array Implementation of Active Control Laws for Multi-mode Vibration Damping
This paper investigate the possibility and effectiveness of multi-mode vibration control of a plate through real-time FPGA (Field Programmable Gate Array) implementation. This type of embedded system offers true parallel and high throughput computation abilities. The control object is an aluminum panel, clamped to a Perspex box’s upper side. Two types of control laws are studied. The first belo...
متن کاملHybrid Fuzzy-PID Application in Boilers to Obtain Optimum Efficiency
Many real time processes have complex, uncertain and nonlinear dynamics. Boilers are nonlinear, time varying, multi-input multi-output (MIMO) systems, whose states generally vary with operating conditions. The major problem in controlling that system is that its drum water pressure and steam flow dynamics include an integrator that results a critically stable behavior. Conventional controller p...
متن کاملuRT51: AN EMBEDDED REAL-TIME PROCESSOR IMPLEMENTED ON FPGA DEVICES
−− In this paper we describe and evaluate the main features of the uRT51 processor. The uRT51 processor was designed for embedded realtime control applications. It is a processor architecture that incorporates the specific functions of a real-time system in hardware. It was described using synthesizable VHDL and it was implemented on FPGA devices. We describe how the uRT51 processor supports ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017